Comparison between univariate and multivariate calibration methods for simultaneous spectrophotometric determination of catechol and hydroquinone in their binary mixture

Document Type: Original Article

Authors

College of Chemistry, Shahrood University of Technology, Shahrood, P.O. Box 36155-316, Iran.

10.22034/fcr.2020.116897.1011

Abstract

Two novel univariate calibration methods, namely the extended ratio subtraction method (EXRSM) and the simultaneous ratio subtraction method (SRSM) were employed for the simultaneous determination of catechol (CT) and hydroquinone (HQ) in synthetic binary mixtures. The precision, accuracy, and specificity of these methods were statistically compared to those obtained from the derivative method (as a univariate calibration method), and the principal component regression (PCR) and the partial least squares (PLS) methods (as two multivariate calibration methods). Comparison of the results showed that there was no significant difference between the proposed methods. The main advantages of the proposed methods are that, unlike the other analytical methods, it is not necessary to use expensive apparatus and chemicals, and that they can be easily performed using a simple spectrophotometer that is available in all quality control labs. The developed methods were successfully applied for the simultaneous determination of CT and HQ with different ratios in tap water as the real sample.

Keywords

Main Subjects


[1]      L.A. Alshahrani, L. Liu, P. Sathishkumar, J. Nan, F.L. Gu, Journal of Electroanalytical Chemistry, 815 (2018) 68.

[2]      M.A. Ghanem, Electrochemistry Communications, 9 (2007) 2501.

[3]      C. Wang, R. Yuan, Y. Chai, F. Hu, Analytical Methods, 4 (2012) 1626.

[4]      E.C. Figueiredo, C.R.T. Tarley, L.T. Kubota, S. Rath, M.A.Z. Arruda, Microchemical journal, 85 (2007) 290.

[5]      Z. Yaoyu, T. Lin, Z. Guangming, Z. Yi, L. Zhen, L. Yuanyuan, C. Jun, Y. Guide, Z. Lu, Z. Sheng, Analytical Methods, 6 (2014) 2371.

[6]      K.O. Lupetti, F.R. Rocha, O. Fatibello-Filho, Talanta, 62 (2004) 463.

[7]      A. Afkhami, H. Khatami, Journal of Analytical Chemistry, 56 (2001) 429.

[8]      H. Qiu, C. Luo, M. Sun, F. Lu, L. Fan, X. Li, Analytica Chimica Acta, 744 (2012) 75.

[9]      S. Li, X. Li, J. Xu, X. Wei, Talanta, 75 (2008) 32.

[10]    H. Cui, C. He, G. Zhao, Journal of Chromatography A, 855 (1999) 171.

[11]    A. Asan, I. Isildak, Journal of Chromatography A, 988 (2003) 145.

[12]    B. Lee, H. Ong, C. Shi, C. Ong, Journal of Chromatography B: Biomedical Sciences and Applications, 619 (1993) 259.

[13]    M.F. Pistonesi, M.S. Di Nezio, M.E. Centurión, M.E. Palomeque, A.G. Lista, B.S.F. Band, Talanta, 69 (2006) 1265.

[14]    B. Pranaityt, A. Padarauskas, A. DikĨius, R. Ragauskas, Analytica Chimica Acta, 507 (2004) 185.

[15]    J.A. Garcia-Mesa, R. Mateos, Journal of agricultural and food chemistry, 55 (2007) 3863.

[16]    M. Nazari, S. Kashanian, P. Moradipour, N. Maleki, Journal of Electroanalytical Chemistry, 812 (2018) 122.

[17]    L.A. Goulart, R. Gonçalves, A.A. Correa, E.C. Pereira, L.H. Mascaro, Microchimica Acta, 185 (2018) 12.

[18]    Y. Xiang, L. li, H. liu, Z. Shi, Y. Tan, C. Wu, Y. Liu, J. Wang, S. Zhang, Sensors and Actuators B: Chemical, 267 (2018) 302.

[19]     H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, F. Lu, Journal of hazardous materials, 353 (2018) 151.

[20]    M. Ghaedi, S. Hajati, B. Barazesh, F. Karimi, G. Ghezelbash, Journal of Industrial and Engineering Chemistry, 19 (2013) 227.

[21]    H.M. Lotfy, S.S. Saleh, N.Y. Hassan, S.M. Elgizawy, Analytical Chemistry Letters, 3 (2013) 70.

[22]    H.M. Lotfy, M.A.-M. Hagazy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96 (2012) 259.

[23]    H.M. Lotfy, M.A.M. Hegazy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113 (2013) 107.

[24]    A. Parmar, S. Sharma, TrAC Trends in Analytical Chemistry, 77 (2016) 44.

[25]    C.B. Ojeda, F.S. Rojas, Microchemical Journal, 106 (2013) 1.

[26]    K.R. Beebe, R.J. Pell, M.B. Seasholtz, Chemometrics: a practical guide, Wiley-Interscience, 1998.

[27]    R. Rosipal, N. Krämer, Overview and recent advances in partial least squares, in:  Subspace, latent structure and feature selection, Springer, 2006, pp. 34-51.

[28]    J.P.A. Martins, R.F. Teofilo, M. Ferreira, Journal of Chemometrics, 24 (2010) 320.

[29]    G. Bagherian, M. A. Chamjangali, H. Eskandari, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67 (2007) 378.

[30]    M .F. Abdel-Ghany, L. A. Hussein, M. F. Ayad, M. M. Youssef, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171 (2017) 236.

[31]    S. M. Tawakkol, M. Farouk, O. A. Elaziz, A. Hemdan, M. A. Shehata, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014) 300.

[32]    M. A. Chamjangali, G. Bagherian, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62 (2005) 189.