Electrocatalytic oxidation of ethanol on the copper, carbon paste and glassy carbon electrode modified with Cu-BDC MOF

Document Type: Original Article

Authors

Department of Chemistry, Faculty of Science, Ilam University, P.O. Box, 69315516, Ilam, Iran.

10.22034/fcr.2020.125028.1018

Abstract

Fuel cells are promising alternatives in power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the comparatively safe handling, non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol electroxidation has attracted great attention and represents one of the major challenges in electrocatalysis. This work investigates ethanol electrooxidation on Cu-BDC MOF catalyst-modified electrodes. The catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), cyclic voltammetry (CV) and chronoamperometry (CA) techniques. The Cu-BDC MOF catalyst shows significantly improved catalytic activity and high durability for ethanol electrooxidation.

Keywords

Main Subjects


[1] V.M. Barragn, A. Heinzel, J. Power Sources, 104 (2002) 66.

[2] H. Tang, S. Wang, M. Pan, S.P. Jiang, Y. Ruan, Electrochim. Acta, 52 (2007) 3714.

[3] F. Kadirgan, S. Beyhan, T. Atilan, Int. J. Hydrogen Energy, 34 (2009) 4312.

[4] R. Yue, H. Wang, D. Bin, J. Xu, Y. Du, W. Lu, J. Guo, J. Mater. Chem. A, 3 (2015) 1077.

[5] S.Y. Shen, T.S. Zhao, J.B. Xu, Int. J. Hydrogen Energy, 35 (2010) 1291.

[6] S. Abdullah, S.K. Kamarudin, U.A. Hasran, M.S. Masdar, W.R.W. Daud, J. Power Sources, 262 (2014) 401.

[7] E. Antolini, J Power Sources, 170 (2007) 1.

[8] W. Wang, Y. Yang, Y. Liu, Z. Zhang, W. Dong, Z. Lei, J. Power Sources, 273 (2015) 631.

[9] M. SoledadUreta-Zañartu, C. Mascayano, C. Gutiérrez, Electrochim. Acta, 165 (2015) 232.

[10] C. Xu, P.K. Shen, X. Ji, R. Zeng, Y. Liu, Electrochem. Commun., 7 (2005) 1305.

[11] C. Lamy, S. Rousseau, E. Belgsir, C. Coutanceau, J.M. Léger, Electrochim. Acta, 49 (2004) 3901.

[12] C. Xu, R. Zeng, P.K. Shen, Z. Wei, Electrochim. Acta, 51 (2005) 1031.

[13] X. Zhang, H. Zhu, Z. Guo, Y. Wei, F. Wang, Int. J. hydrogen energy, 35 (2010) 8841.

[14] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem., 124 (2012) 3420.

[15] L.T.L. Nguyen, T.T. Nguyen, K.D. Nguyen, N.T.S. Phan, Appl. Catal. A, 425–426 (2012) 44.

[16] M. Jahan, Q. Bao, K.P. Loh, JACS, 134 (2012) 6707.

[17] L.L. Wen, F. Wang, J. Feng, K.L. Lv, C.G. Wang, D.F. Li, Cryst. Growth & Des., 9 (2009) 3581.

[18] F. Luo, Y.X. Che, J.M. Zheng, Cryst. Growth & Des., 9 (2009) 1066.

[19] B. Zheng, R. Yun, J. Bai, Z. Lu, L. Du, Y. Li, Inorg. Chem., 52 (2013) 2823.

[20] B.V. Harbuzaru, A. Corma, F. Rey, J. Jord, D. Ananias, L. Carlos, J. Rocha, Angew. Chem., 48 (2009) 6476.

[21] Y. Wang; Y. Wu; J. Xi, H. Ge; X. Hu, Analyst, 138 (2013) 5113.

[22] J. Zhao; C. Wei; H. Pang, Part Part Syst Charact, 32 (2014) 429.

[23] P. Puthiaraj, P. Suresh, K. Pitchumani. Green Chem., 16 (2014) 2865.

[24] K. Nakamoto, A.E. Martell, J. Chem. Physic, 32 (1960) 588.

[25] C.G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R.A. Gerhardt, R. Tannenbaum. Eur. J. Inorg. Chem., 2009 (2009) 233843.

[26] F. Wang, H. Guo, Y. Chai, Y. Li, C. Liu, Microporous and Mesoporous Mater., 173 (2013) 181.

[27] G. Karim-Nezhad, B. Zare-Dizajdizi, P. Seye-Dorraji, Catal. Commun., 12 (2011) 906.