[1] T.N. Wells, P.L. Alonso, W.E. Gutteridge, New medicines to improve control and contribute to the eradication of malaria, Nature reviews Drug discovery, 8 (2009) 879.
[2] W.H. Organization, W.E.C.o. Malaria, WHO expert committee on malaria: twentieth report, World Health Organization, 2000.
[3] J.N. Domínguez, Chemotherapeutic agents against malaria: what next after chloroquine?, Current topics in medicinal chemistry, 2 (2002) 1173-1185.
[4] A. Mital, D. Murugesan, M. Kaiser, C. Yeates, I.H. Gilbert, Discovery and optimisation studies of antimalarial phenotypic hits, European journal of medicinal chemistry, 103 (2015) 530-538.
[5] L.H. Hall, L.B. Kier, The molecular connectivity chi indexes and kappa shape indexes in structure‐property modeling, Reviews in computational chemistry, (1991) 367-422.
[6] V.N. Chandrashekar, K. Punnath, K.K. Dayanand, R.N. Achur, S.B. Kakkilaya, P. Jayadev, S.N. Kumari, D.C. Gowda, Malarial anemia among pregnant women in the south-western coastal city of Mangaluru in India, Informatics in Medicine Unlocked, 15 (2019) 100159.
[7] D. Murugesan, M. Kaiser, K.L. White, S. Norval, J. Riley, P.G. Wyatt, S.A. Charman, K.D. Read, C. Yeates, I.H. Gilbert, Structure–Activity Relationship Studies of Pyrrolone Antimalarial Agents, ChemMedChem, 8 (2013) 1537-1544.
[8] C. Hansch, J.F. Sinclair, P.R. Sinclair, Induction of Cytochrome P450 by Barbiturates in Chick Embryo Hepatocytes: A Quantitative Structure‐Activity Analysis, Quantitative Structure‐Activity Relationships, 9 (1990) 223-226.
[9] S. Asadpour, M. CHamsaz, J.H. Md, Application of MLR, PLS and artificial neural networks for prediction of GC/ECD retention times of chlorinated pesticides, herbicides, and organohalides, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3 (2012) 850-860.
[10] P.M. Khan, K. Roy, Current approaches for choosing feature selection and learning algorithms in quantitative structure–activity relationships (QSAR), Expert opinion on drug discovery, 13 (2018) 1075-1089.
[11] S.G. Nasab, A. Semnani, F. Marini, A. Biancolillo, Prediction of viscosity index and pour point in ester lubricants using quantitative structure-property relationship (QSPR), Chemometrics and Intelligent Laboratory Systems, 183 (2018) 59-78.
[12] J. Ghasemi, A. Abdolmaleki, S. Asadpour, F. Shiri, Prediction of solubility of nonionic solutes in anionic micelle (SDS) using a QSPR model, QSAR & Combinatorial Science, 27 (2008) 338-346.
[13] P. Gramatica, V. Consonni, R. Todeschini, QSAR study on the tropospheric degradation of organic compounds, Chemosphere, 38 (1999) 1371-1378.
[14] M. Nendza, R. Kühne, A. Lombardo, S. Strempel, G. Schüürmann, PBT assessment under REACH: screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish, Science of the Total Environment, 616 (2018) 97-106.
[15] S. Chtita, M. Larif, M. Ghamali, M. Bouachrine, T. Lakhlifi, DFT-based QSAR Studies of MK801 derivatives for non competitive antagonists of NMDA using electronic and topological descriptors, Journal of taibah university for chemistry, 9 (2014) 143-154.
[16] A. Adad, M. Larif. R. Hmamouchi. M. Bouachrine& T. Lakhlifi. Two different antibacterial activities against Staphylococcus aureus and Bacillus subtilis of 1.3-disubstituted-1H-naphtho [1.2-e][1.3] oxazine derivatives. Studies by combining DFT and QSAR results, J. Comp. Meth. Mol. Des, 4 (2014) 72-83.